

Gedae Functional Interface to

Launch Package Programmers

Manual

January 2008

Last revision November 2, 2009

Address: Gedae, Inc.

 1247 N Church St, STE 5

 Moorestown, NJ 08057

Telephone: (856) 231-4458

FAX: (856) 231-1403

Internet: www.gedae.com

http://www.gedae.com/
http://www.gedae.com/

2

Table of Contents
Table of Contents ... 2

Introduction ... 3

How to Create an Application Graph That Implements a Particular Function 3

The Function Generated for a Graph .. 6

How to Code-generate the Function from the Graph .. 7

Code-generation Products .. 8

Using the Generated Functions .. 10

Linking the Final Application ... 13

3

Introduction

A user can convert a Gedae graph into a simple function call that can be linked with any external

program. This capability allows users to replace functions in their current code with a call to a

Gedae created launch package that runs on a high performance processor. Replacing functions

with Gedae generated functions provides immediate acceleration of a user’s application with

minimal impact to their current code.

How to Create an Application Graph That Implements a

Particular Function

We will illustrate how a Gedae graph can be turned into a function call with the following

example. The blue Group in the graph below scales its input vector by a parameter K, takes the

real fft of the scaled vector and creates an output vector that is the squared magnitude of the fft

output.

The blue Group can be converted into an object file that implements the function call with

prototype:

void test1(

4

 float *in /* s_v<in */,

 int n_in,

 float *out /* v_s>out */,

 int n_out,

 float K /* v_multK<K */);

Where

 in is the input vector data,

 n_in is the number of scalar samples in the input vectors

 out is the output vector data

 n_out is the number of scalar samples in the output vectors

 K is the scaling parameter to the v_multK box.

In the above example, the values of n_in must be a multiple of 1024, and n_out must be a

multiple of 512 (since the output vector size of the v_rfft is half the input vector size). If 5

vectors are to be processed in one call to the function, then n_in will be 1024*5 = 5120 and n_out

will be 512*5 = 2560.

The function interface that gets generated is defined by “host” boundaries to the group and by

user settable parameters. In the above graph, the host boundaries are placed in the graph by the

copyh and hcopy boxes. A list of the boxes provided in embeddable/stream/host is:

Primitive Data Type Input/Output

embeddable/stream/host/copyh float input

embeddable/stream/host/i_copyh int input

embeddable/stream/host/x_copyh complex input

5

embeddable/stream/host/hcopy float output

embeddable/stream/host/i_hcopy int output

embeddable/stream/host/x_hcopy complex output

Each host boundary – input or output adds a pointer argument to the generated function call and

an integer parameter saying how much data is being supplied or how much data is expected as the

return value. The parameters are named after the

All host boundary boxes are passed scalar data. If a user desires the function to process vectors

or matrices, then an appropriate conversion function must be added. The following conversion

functions convert scalars to/from higher level data types:

Primitive Data Type Conversion Type

embeddable/vector/s_v float scalar to vector

embeddable/vector/v_s float vector to scalar

embeddable/vector/complex/x_vx complex scalar to vector

embeddable/vector/complex/vx_x complex vector to scalar

embeddable/matrix/s_m float scalar to matrix

embeddable/matrix/m_s float matrix to scalar

embeddable/matrix/complex/x_mx complex scalar to matrix

embeddable/matrix/complex/mx_x complex matrix to scalar

Again, while not all possible conversion functions are available, it is easy to see how to create

new conversion functions from the ones provided.

Since the example above has a floating point vector as an input the copyh box is followed by an

s_v box to convert the input scalar stream to a vector. The output vector is converted to a scalar

6

host boundary with a v_s box followed by an hcopy. The input vector size is hard-coded to 1024

in the above example, and the resulting output vector will be of size 512.

The only parameter in the graph is the user settable parameter value v_multK<K and this appears

as the last parameter to the generated function test. Parameters that are hardwired on the graph

such as the s_v<N input – or are not user settable because they affect the static data flow of the

graph – are not made part of the function interface.

The Function Generated for a Graph

In order to create a graph that implements the function you desire, you need to know the rules for

how the functional interface is created from the graph. The code-generation process (described

below) will cause a function to be created that is named after the graph. So if the graph is found

in test/func_codegen/test1, then the function created will be named test1. Two

arguments are added for each input host boundary. The first argument is a pointer of the data

type of the input. The second argument is how many scalar samples of that type are to be passed

to the function. For the s_v<in input of the example graph, the parameters that are added are:

 float *in /* s_v<in */,

 int n_in,

After all of the input host boundary arguments are added to the function, the output host boundary

arguments are added to the function. Output arguments are formed in the same way as input

arguments. The arguments for the v_s>out host boundary are:

 float *out /* v_s>out */,

 int n_out,

7

Following the host inputs and host outputs are the parameter values to the graph. For scalar

parameters these are given as a parameter of the given type. For example, the v_multK<K input

argument is:

 float K /* v_multK<K */

Parameters are distinguished from host boundaries in that the parameter value is set once at the

beginning of function execution, while the input and output to the function can be as large as

desired. All inputs and outputs should be balanced as dictated by the dataflow of the application.

They must be provided in multiples of the vector or matrix sizes dictated by the token types of the

application. Since the test1 graph takes input vectors of size 1024 and produces an output vector

of size 512, the following are legitimate calls to the test1 function:

test1(in,1024,out,512,37); /* process 1 vector with K = 37 */

test1(in,204800,out,102400,23); /* process 200 vectors with K = 23 */

How to Code-generate the Function from the Graph

Once the graph has been created, the user can partition and map the launch package using the

Group Control dialog in the usual way. Changing the mapping and other Group control

parameters will not change the behavior of the function but distributing the function to run on

multiple high performance processors will make the function run faster. The user need not set

any optimization parameters, which allows the user to quickly verify the correctness of the

generated function; at a later time, the user can optimize the graph and produce a faster function

that produces identical results.

Once all the group control parameters have been set to create an optimal implementation, the user

can create the linkable object that provides the function call for the graph. To do this, the user

must bring up the Launch Package Dialog, set the launch package directory and press the Make

button. In addition to building all the other launch package objects, as for previous versions of

Gedae, the make will also add a linkable object to the launch package directory that implements

three functions.

8

If the make fails it may be due to a problem using the standard compilation settings. Also, the

user may which to override the standard settings for optimization or debugging purposes. The

compilation settings are set by files in the $GEDAE/<hostname>/<target_name>/bin directory

but can be overridden by the user by creating files in the

$GEDAEHOME/<hostname>/embedded/<target_name> directory. (where

$GEDAEHOME/<hostname> is the directory from which the user runs the Gedae development

environment).

target host type host description <host_name> <target_name>

NT Windows PC nt ent

Redhat Linux PC redhat eredhat

PPU Linux Cell BE/ PPU redhat ppu

.

The $GEDAE/<hostname>/<targetname>/bin/std_make_info sets most of the compilation

parameters. Environment variable settings in this file provide defaults, and these defaults can be

overridden by commenting out lines in the

$GEDAEHOME/<hostname>/embedded/<targetname>/runtime_make_info.

The final link into an object suitable for linking with the users final program is done by

$GEDAE/<hostname>/<targetname>/bin/link_func (or link_func.bat for Windows systems). The

user can provide their own version of this library by create a file

$GEDAEHOME/<hostname>/embedded/<targetname>/link_func for non-windows systems and

$GEDAEHOME/nt/embedded/ent/link_func.bat for Windows systems.

Code-generation Products

The file <graphname>.h contains the prototypes for functions code-generated for the application

graph, where <graphname> is the name of the application graph. For example, for the

test/func_codegen/test1 graph, the file test1.h is placed in the launch package directory. This file

contains the prototypes for the initialization, startup, execution, kill and free function which are:

9

void init_test1(void);

void start_test1(void);

void kill_test1(void);

void free_test1(void);

void test1(

 float *in /* s_v<in */,

 int n_in,

 float *out /* v_s>out */,

 int n_out,

 float K /* v_multK<K */);

The initialization and start functions are called before execution. The kill and free functions are

called after execution. The execution function (for example, test1) can be called multiple times,

and the state of the execution is retained between invocations. Startup and tear down are

separated into four functions to allow multiple launch packages to be used in the same program.

This feature is illustrated in the examples below.

This file should get included in the user’s application code that will call these functions. The

actual object file or library that gets linked with the user’s application is found in different places

for different host BSPs. The following table shows where the linkable objects are found relative

to the launch package directory for the three supported host types:

host type host description linkable object

NT Windows PC ent/nt/<graphname>.lib

Redhat Linux PC eredhat/redhat/<graphname>.o

PPU Linux Cell/BE ppu/ppu/<graphname>.o

10

Using the Generated Functions

To use the generated functions in a C program application, the user must call the start and init

functions once at the beginning of the application, call the execution function as many times as

desired during the application execution and then call the kill and free functions prior to

application exit. For example, the test1 graph function can be called as:

#include <stdio.h>

#include <math.h>

#include <test1.h>

main() {

 float z[1024];

 float x[512];

 for (i=0; i<1024; i++) { z[i] = cos(0.1*i); }

 init_test1();

 start_test1();

 test1(z,1024,x,512,10);

…

 test1(z,1024,x,512,20);

…

 test1(z,1024,x,512,40);

…

 kill_test1();

11

 free_test1();

}

If the file using the test1.h include file is a C++ source file rather than a C source file, then

instead of

#include <test1.h>

The file should contain:

extern "C" {

#include <test1.h>

}

If multiple launch packages are being used, the init and free functions are still called only once at

the beginning and end, but the start and kill functions are called between launch packages to

perform the context switch. This procedure can also be used if the launch package ties up system

resources that must be used by other parts of the application, such as large memory buffers or

coprocessors like the SPEs. The following example illustrates switching between two launch

packages:

#include <stdio.h>

#include <math.h>

#include <test1.h>

#include <test2.h>

main() {

 float z[1024];

12

 float x[512];

 for (i=0; i<1024; i++) { z[i] = cos(0.1*i); }

 init_test1();

 start_test1();

 test1(z,1024,x,512,10);

 test1(z,1024,x,512,20);

 test1(z,1024,x,512,40);

 kill_test1();

 start_test2();

 test2(z,1024,x,512,10);

 test2(z,1024,x,512,20);

 test2(z,1024,x,512,40);

 kill_test2();

 free_test1();

 free_test2();

}

13

Linking the Final Application

The method of linking the function code-generated for the application differs depending on the

host type of the application. Here are the link lines for NT, Redhat and PPU hosts.

Host type NT (command-line):

link /out:<userapp>.exe <users_objects> -LIBPATH

<launchdir>/ent/nt <graphname>.lib –nodefaultlib:libc –

nodefaultlib:libcmt

Host type NT (Visual Studio):

In the Linker’s configuration properties, put <launchdir>/ent/nt in Additional Library

Directories in the “General” frame, put <graphname>.lib in Additional Dependencies in the

“Input” frame and put libc;libcmt in Ignore Specific Library in the “Input” frame.

Host type Redhat:

gcc -o <userapp> <users_objects>

<launchdir>/eredhat/redhat/<graphname>.o -lpthread –lrt

<other_libs>

Host type PPU:

ppu-gcc -o <userapp> <users_objects>

<launchdir>/ppu/ppu/<graphname>.o -m32 –lpthread –lrt

<other_libs>

14

Where:

<userapp> is the name of the application executable the user is generating

<users_objects> is the list of object files and libraries that the user links to create the

application. One of the objects includes the call to the startup, execution and kill functions.

<launchdir> is the launch package directory name in which the user’s application has been

created.

<graphname> is the name of the user’s Gedae graph

<other_libs> is a list of libraries that may be needed to link the primitives included in the

Gedae graph. For example, a primitive that calls the math.h function cos will require –lm to be

linked with it for the Redhat and PPU hosts.

